upd
This commit is contained in:
		
							parent
							
								
									d3d57ed7be
								
							
						
					
					
						commit
						dea64a7b7f
					
				
					 1 changed files with 35 additions and 18 deletions
				
			
		| 
						 | 
				
			
			@ -4,7 +4,7 @@ import pandas as pd
 | 
			
		|||
import pywt
 | 
			
		||||
 | 
			
		||||
from scipy.fft import fft, fftfreq
 | 
			
		||||
from scipy.signal import find_peaks, hilbert, butter, filtfilt, correlate
 | 
			
		||||
from scipy.signal import find_peaks, hilbert, butter, filtfilt, correlate, sosfiltfilt
 | 
			
		||||
from scipy.stats import linregress
 | 
			
		||||
from scipy.optimize import curve_fit
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -63,26 +63,43 @@ def filter_signal_by_modes(time, signal, num_modes=1, bandwidth_factor=0.1, nyqu
 | 
			
		|||
 | 
			
		||||
    # Pour chaque fréquence dominante, appliquer un filtre passe-bande
 | 
			
		||||
    for freq in dominant_freqs:
 | 
			
		||||
        # Définir la bande passante (10% de la fréquence centrale de chaque côté)
 | 
			
		||||
        # Définir la bande passante
 | 
			
		||||
        bandwidth = bandwidth_factor * freq
 | 
			
		||||
        lowcut = freq - bandwidth
 | 
			
		||||
        lowcut = max(0.01, freq - bandwidth)  # Éviter les fréquences négatives
 | 
			
		||||
        highcut = freq + bandwidth
 | 
			
		||||
 | 
			
		||||
        if nyquist:
 | 
			
		||||
            # Éviter les fréquences négatives ou supérieures à la fréquence de Nyquist
 | 
			
		||||
            nyq = 0.5 * fs
 | 
			
		||||
            if lowcut <= 0:
 | 
			
		||||
                lowcut = 0.01
 | 
			
		||||
            if highcut >= nyq:
 | 
			
		||||
                highcut = nyq - 0.01
 | 
			
		||||
    
 | 
			
		||||
            # Créer le filtre Butterworth
 | 
			
		||||
            lowcut = lowcut / nyq
 | 
			
		||||
            highcut = highcut / nyq
 | 
			
		||||
        b, a = butter(4, [lowcut, highcut], btype='band')
 | 
			
		||||
 | 
			
		||||
        # Appliquer le filtre (filtfilt pour éviter le déphasage)
 | 
			
		||||
        filtered_signal = filtfilt(b, a, signal_clean)
 | 
			
		||||
        if nyquist:
 | 
			
		||||
            # Éviter les fréquences supérieures à la fréquence de Nyquist
 | 
			
		||||
            nyq = 0.5 * fs
 | 
			
		||||
            highcut = min(highcut, nyq * 0.99)  # Laisser une marge
 | 
			
		||||
    
 | 
			
		||||
            # Normaliser les fréquences
 | 
			
		||||
            lowcut_norm = lowcut / nyq
 | 
			
		||||
            highcut_norm = highcut / nyq
 | 
			
		||||
        else:
 | 
			
		||||
            lowcut_norm = lowcut
 | 
			
		||||
            highcut_norm = highcut
 | 
			
		||||
        
 | 
			
		||||
        print(f"Filtrage à {freq:.2f} Hz: [{lowcut_norm:.3f}, {highcut_norm:.3f}] (normalisé)")
 | 
			
		||||
        
 | 
			
		||||
        # Vérifier si le signal est suffisamment long
 | 
			
		||||
        period = 1 / lowcut if lowcut > 0 else 0
 | 
			
		||||
        required_cycles = 40  # Vous avez mentionné 30 cycles
 | 
			
		||||
        min_length = required_cycles * period * fs
 | 
			
		||||
        
 | 
			
		||||
        if len(signal_clean) < min_length:
 | 
			
		||||
            print(f"Avertissement: Signal court pour {freq:.2f} Hz. "
 | 
			
		||||
                  f"Requis: {min_length:.0f} échantillons, Disponible: {len(signal_clean)}")
 | 
			
		||||
            
 | 
			
		||||
            # Méthode alternative: utiliser un filtre SOS (Second-Order Sections)
 | 
			
		||||
            # plus stable pour les signaux courts
 | 
			
		||||
            sos = butter(4, [lowcut_norm, highcut_norm], btype='band', output='sos')
 | 
			
		||||
            filtered_signal = sosfiltfilt(sos, signal_clean)
 | 
			
		||||
        else:
 | 
			
		||||
            # Méthode standard
 | 
			
		||||
            b, a = butter(4, [lowcut_norm, highcut_norm], btype='band')
 | 
			
		||||
            filtered_signal = filtfilt(b, a, signal_clean)
 | 
			
		||||
        
 | 
			
		||||
        filtered_signals.append(filtered_signal)
 | 
			
		||||
 | 
			
		||||
    # Le temps reste le même après filtrage
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue