upd
This commit is contained in:
		
							parent
							
								
									19cf916db9
								
							
						
					
					
						commit
						cdc5d7a9b9
					
				
					 2 changed files with 30 additions and 26 deletions
				
			
		| 
						 | 
				
			
			@ -1 +1 @@
 | 
			
		|||
__version__ = '0.1.18'
 | 
			
		||||
__version__ = '0.1.19'
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -70,7 +70,7 @@ def filter_signal_by_modes(time, signal, num_modes=1, bandwidth_factor=0.1, requ
 | 
			
		|||
        bandwidth = bandwidth_factor * freq
 | 
			
		||||
        lowcut = max(0.01, freq - bandwidth)  # Éviter les fréquences négatives
 | 
			
		||||
        highcut = freq + bandwidth
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
        # Éviter les fréquences supérieures à la fréquence de Nyquist
 | 
			
		||||
        nyq = 0.5 * fs
 | 
			
		||||
        highcut = min(highcut, nyq * 0.99)  # Laisser une marge
 | 
			
		||||
| 
						 | 
				
			
			@ -78,18 +78,18 @@ def filter_signal_by_modes(time, signal, num_modes=1, bandwidth_factor=0.1, requ
 | 
			
		|||
        # Normaliser les fréquences
 | 
			
		||||
        lowcut_norm = lowcut / nyq
 | 
			
		||||
        highcut_norm = highcut / nyq
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        print(f"Filtrage à {freq:.2f} Hz, bande : [{lowcut_norm:.5f}, {highcut_norm:.5f}] (normalisé)")
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        # Vérifier si le signal est suffisamment long
 | 
			
		||||
        period = 1 / lowcut if lowcut > 0 else 0
 | 
			
		||||
        #required_cycles = 40  # Vous avez mentionné 40 cycles
 | 
			
		||||
        min_length = required_cycles * period * fs
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        if len(signal_clean) < min_length:
 | 
			
		||||
            print(f"Avertissement: Signal court pour {freq:.2f} Hz. "
 | 
			
		||||
                  f"Requis: {min_length:.0f} échantillons, Disponible: {len(signal_clean)}")
 | 
			
		||||
            
 | 
			
		||||
 | 
			
		||||
            # Méthode alternative: utiliser un filtre SOS (Second-Order Sections)
 | 
			
		||||
            # plus stable pour les signaux courts
 | 
			
		||||
            sos = butter(4, [lowcut_norm, highcut_norm], btype='band', output='sos')
 | 
			
		||||
| 
						 | 
				
			
			@ -98,7 +98,7 @@ def filter_signal_by_modes(time, signal, num_modes=1, bandwidth_factor=0.1, requ
 | 
			
		|||
            # Méthode standard
 | 
			
		||||
            b, a = butter(4, [lowcut_norm, highcut_norm], btype='band')
 | 
			
		||||
            filtered_signal = filtfilt(b, a, signal_clean)
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        filtered_signals.append(filtered_signal)
 | 
			
		||||
 | 
			
		||||
    # Le temps reste le même après filtrage
 | 
			
		||||
| 
						 | 
				
			
			@ -107,17 +107,17 @@ def filter_signal_by_modes(time, signal, num_modes=1, bandwidth_factor=0.1, requ
 | 
			
		|||
    return np.array(filtered_signals), dominant_freqs, time_filtered
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def plot_filtered_modes(t, e, e_filtered, e_frequencies, e_time, n_modes):
 | 
			
		||||
def plot_filtered_modes(t, e, e_filtered, e_frequencies, e_time, n_modes, output=None):
 | 
			
		||||
 | 
			
		||||
    fig, ax = plt.subplots(nrows=n_modes+1, ncols=2, figsize=(12, 4 * n_modes), gridspec_kw={'width_ratios': [3, 1]})
 | 
			
		||||
     
 | 
			
		||||
 | 
			
		||||
    ax[0, 0].plot(t, e)
 | 
			
		||||
    ax[0, 0].set_title('Signal original')
 | 
			
		||||
    ax[0, 0].set_xlabel('Temps (s)')
 | 
			
		||||
    ax[0, 0].set_ylabel('Amplitude')
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    for i in range(n_modes):
 | 
			
		||||
        ax[i+1, 0].plot(e_time, e_filtered[i])
 | 
			
		||||
        ax[i+1, 0].set_title(f'Mode #{i+1} filtré ({e_frequencies[i]:.2f} Hz)')
 | 
			
		||||
| 
						 | 
				
			
			@ -126,10 +126,12 @@ def plot_filtered_modes(t, e, e_filtered, e_frequencies, e_time, n_modes):
 | 
			
		|||
 | 
			
		||||
        ax[i+1, 1].plot(e_time, e, color='red')
 | 
			
		||||
        ax[i+1, 1].plot(e_time, e_filtered[i])
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        ax[i+1, 1].set_xlim(left=0.5 * e_time.mean(), right=0.5*e_time.mean() + 10/e_frequencies[i])
 | 
			
		||||
    plt.tight_layout()
 | 
			
		||||
    plt.show()
 | 
			
		||||
    if output:
 | 
			
		||||
        plt.savefig(output)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -238,7 +240,7 @@ def analyze_signal_Hilbert(time, e_signal, s_signal, freq_rtol=0.01):
 | 
			
		|||
    period_e = 1 / freq_e
 | 
			
		||||
    period_s = 1 / freq_s
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    res = {'period_e': period_e,
 | 
			
		||||
           'period_s': period_s,
 | 
			
		||||
| 
						 | 
				
			
			@ -247,7 +249,7 @@ def analyze_signal_Hilbert(time, e_signal, s_signal, freq_rtol=0.01):
 | 
			
		|||
           'phase': mean_phase_diff,
 | 
			
		||||
           'phrase_deg': phase_diff_deg,
 | 
			
		||||
           'delay': time_shift}
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    return res
 | 
			
		||||
 | 
			
		||||
def analyze_signal_sinfit(time, e_signal, s_signal, freq_rtol=0.01):
 | 
			
		||||
| 
						 | 
				
			
			@ -344,7 +346,7 @@ def analyze_signal_sinfit(time, e_signal, s_signal, freq_rtol=0.01):
 | 
			
		|||
    period_e = 1 / freq_e
 | 
			
		||||
    period_s = 1 / freq_s
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
    res = {'period_e': period_e,
 | 
			
		||||
           'period_s': period_s,
 | 
			
		||||
           'freq_e': freq_e,
 | 
			
		||||
| 
						 | 
				
			
			@ -352,7 +354,7 @@ def analyze_signal_sinfit(time, e_signal, s_signal, freq_rtol=0.01):
 | 
			
		|||
           'phase': phase_diff,
 | 
			
		||||
           'phrase_deg': phase_diff_deg,
 | 
			
		||||
           'delay': time_shift}
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    return res
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -460,7 +462,7 @@ def analyze_signal_cross_correlation(time, e_signal, s_signal, freq_rtol=0.01):
 | 
			
		|||
           'phase': phase_diff,
 | 
			
		||||
           'phrase_deg': phase_diff_deg,
 | 
			
		||||
           'delay': time_shift}
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    return res
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -571,18 +573,18 @@ def analyze_signal_wavelet(time, e_signal, s_signal, freq_rtol=0.01):
 | 
			
		|||
           'phase': mean_phase_diff,
 | 
			
		||||
           'phrase_deg': phase_diff_deg,
 | 
			
		||||
           'delay': time_shift}
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    return res
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def plot_phases(e_time, e_filtered, e_frequencies, s_filtered, n_modes, callback=analyze_signal_wavelet):
 | 
			
		||||
    fig, ax = plt.subplots(nrows=n_modes, ncols=2, figsize=(12, 6), gridspec_kw={'width_ratios': [3, 1]})
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    for mod in range(n_modes):
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
        res = callback(e_time, e_filtered[mod], s_filtered[mod], freq_rtol=0.3)
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
        ax[mod, 0].set_title(f'Freq: {res['freq_e']:.3f}, Phase: {res['phase']:.3f}, Delay: {res['delay']:.3f}' )
 | 
			
		||||
        ax[mod, 0].plot(e_time, e_filtered[mod], label='e')
 | 
			
		||||
        ax[mod, 0].plot(e_time, s_filtered[mod], label='s')
 | 
			
		||||
| 
						 | 
				
			
			@ -592,9 +594,11 @@ def plot_phases(e_time, e_filtered, e_frequencies, s_filtered, n_modes, callback
 | 
			
		|||
        ax[mod, 1].plot(e_time, e_filtered[mod], label='e')
 | 
			
		||||
        ax[mod, 1].plot(e_time, s_filtered[mod], label='s')
 | 
			
		||||
        ax[mod, 1].set_xlim(left=0.5 * e_time.mean(), right=0.5*e_time.mean() + 10/e_frequencies[mod])
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        for a in ax[:, 0]:
 | 
			
		||||
            a.legend()
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    plt.tight_layout();
 | 
			
		||||
    plt.show();
 | 
			
		||||
    plt.show();
 | 
			
		||||
    if output:
 | 
			
		||||
        plt.savefig(output)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue