add option dominant freqs
This commit is contained in:
parent
d007702712
commit
6f449512d1
2 changed files with 20 additions and 18 deletions
|
|
@ -1 +1 @@
|
|||
__version__ = '0.1.23'
|
||||
__version__ = '0.1.24'
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ from scipy.stats import linregress
|
|||
from scipy.optimize import curve_fit
|
||||
|
||||
|
||||
def filter_signal_by_modes(time, signal, num_modes=1, bandwidth_factor=0.1, required_cycles=100):
|
||||
def filter_signal_by_modes(time, signal, num_modes=1, bandwidth_factor=0.1, required_cycles=100, dominant_freqs=None):
|
||||
"""
|
||||
Filtre un signal pour extraire ses composantes fréquentielles dominantes.
|
||||
|
||||
|
|
@ -20,6 +20,7 @@ def filter_signal_by_modes(time, signal, num_modes=1, bandwidth_factor=0.1, requ
|
|||
time (array-like): Array contenant les données temporelles.
|
||||
signal (array-like): Array contenant les données du signal.
|
||||
num_modes (int): Nombre de modes fréquentiels à extraire.
|
||||
dominant_freqs: les frequences des modes, if None, computed internally
|
||||
|
||||
Returns:
|
||||
tuple: (filtered_signals, frequencies, time_filtered)
|
||||
|
|
@ -38,25 +39,26 @@ def filter_signal_by_modes(time, signal, num_modes=1, bandwidth_factor=0.1, requ
|
|||
# Supprimer la composante DC
|
||||
signal_clean = signal - np.mean(signal)
|
||||
|
||||
# Calculer la FFT
|
||||
n = len(time)
|
||||
fft_signal = fft(signal_clean)
|
||||
freqs = fftfreq(n, dt)
|
||||
if dominant_freqs is None:
|
||||
# Calculer la FFT
|
||||
n = len(time)
|
||||
fft_signal = fft(signal_clean)
|
||||
freqs = fftfreq(n, dt)
|
||||
|
||||
# Prendre seulement les fréquences positives
|
||||
positive_mask = freqs > 0
|
||||
freqs_pos = freqs[positive_mask]
|
||||
fft_pos = fft_signal[positive_mask]
|
||||
# Prendre seulement les fréquences positives
|
||||
positive_mask = freqs > 0
|
||||
freqs_pos = freqs[positive_mask]
|
||||
fft_pos = fft_signal[positive_mask]
|
||||
|
||||
# Trouver les pics dans le spectre
|
||||
magnitude = np.abs(fft_pos)
|
||||
peaks, _ = find_peaks(magnitude, height=0.1*np.max(magnitude))
|
||||
peak_freqs = freqs_pos[peaks]
|
||||
peak_mags = magnitude[peaks]
|
||||
# Trouver les pics dans le spectre
|
||||
magnitude = np.abs(fft_pos)
|
||||
peaks, _ = find_peaks(magnitude, height=0.1*np.max(magnitude))
|
||||
peak_freqs = freqs_pos[peaks]
|
||||
peak_mags = magnitude[peaks]
|
||||
|
||||
# Trier les pics par magnitude et sélectionner les num_modes plus importants
|
||||
idx = np.argsort(peak_mags)[-num_modes:]
|
||||
dominant_freqs = peak_freqs[idx]
|
||||
# Trier les pics par magnitude et sélectionner les num_modes plus importants
|
||||
idx = np.argsort(peak_mags)[-num_modes:]
|
||||
dominant_freqs = peak_freqs[idx]
|
||||
|
||||
# Trier les fréquences par ordre croissant
|
||||
dominant_freqs.sort()
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue