This commit is contained in:
François Boulogne 2025-05-27 16:01:50 +02:00
parent 8bb23c3724
commit d321fce459
9 changed files with 371 additions and 261 deletions

View file

@ -17,7 +17,7 @@ from .utils import OptimizeResult
def thickness_from_fft(lambdas, intensities,
def thickness_from_fft(wavelengths, intensities,
refractive_index,
num_half_space=None,
plot=None):
@ -26,7 +26,7 @@ def thickness_from_fft(lambdas, intensities,
Parameters
----------
lambdas : array
wavelengths : array
Wavelength values in nm.
intensities : array
Intensity values.
@ -34,7 +34,7 @@ def thickness_from_fft(lambdas, intensities,
Value of the refractive index of the medium.
num_half_space : scalar, optional
Number of points to compute FFT's half space.
If `None`, default corresponds to `10*len(lambdas)`.
If `None`, default corresponds to `10*len(wavelengths)`.
debug : boolean, optional
Show plot of the transformed signal and the peak detection.
@ -44,32 +44,32 @@ def thickness_from_fft(lambdas, intensities,
The attribute `thickness` gives the thickness value in nm.
"""
if num_half_space is None:
num_half_space = 10 * len(lambdas)
num_half_space = 10 * len(wavelengths)
# FFT requires evenly spaced data.
# So, we interpolate the signal.
# Interpolate to get a linear increase of 1 / lambdas.
inverse_lambdas_times_n = refractive_index / lambdas
f = interp1d(inverse_lambdas_times_n, intensities)
# Interpolate to get a linear increase of 1 / wavelengths.
inverse_wavelengths_times_n = refractive_index / wavelengths
f = interp1d(inverse_wavelengths_times_n, intensities)
inverse_lambdas_linspace = np.linspace(inverse_lambdas_times_n[0],
inverse_lambdas_times_n[-1],
inverse_wavelengths_linspace = np.linspace(inverse_wavelengths_times_n[0],
inverse_wavelengths_times_n[-1],
2*num_half_space)
intensities_linspace = f(inverse_lambdas_linspace)
intensities_linspace = f(inverse_wavelengths_linspace)
# Perform FFT
density = (inverse_lambdas_times_n[-1]-inverse_lambdas_times_n[0]) / (2*num_half_space)
inverse_lambdas_fft = fftfreq(2*num_half_space, density)
density = (inverse_wavelengths_times_n[-1]-inverse_wavelengths_times_n[0]) / (2*num_half_space)
inverse_wavelengths_fft = fftfreq(2*num_half_space, density)
intensities_fft = fft(intensities_linspace)
# The FFT is symetrical over [0:N] and [N:2N].
# Keep over [N:2N], ie for positive freq.
intensities_fft = intensities_fft[num_half_space:2*num_half_space]
inverse_lambdas_fft = inverse_lambdas_fft[num_half_space:2*num_half_space]
inverse_wavelengths_fft = inverse_wavelengths_fft[num_half_space:2*num_half_space]
idx_max_fft = np.argmax(abs(intensities_fft))
freq_max = inverse_lambdas_fft[idx_max_fft]
freq_max = inverse_wavelengths_fft[idx_max_fft]
thickness_fft = freq_max / 2.
@ -77,7 +77,7 @@ def thickness_from_fft(lambdas, intensities,
plt.figure(figsize=(10, 6),dpi =600)
if plot:
plt.loglog(inverse_lambdas_fft, np.abs(intensities_fft))
plt.loglog(inverse_wavelengths_fft, np.abs(intensities_fft))
plt.loglog(freq_max, np.abs(intensities_fft[idx_max_fft]), 'o')
plt.xlabel('Frequency')
plt.ylabel(r'FFT($I^*$)')
@ -86,67 +86,90 @@ def thickness_from_fft(lambdas, intensities,
return OptimizeResult(thickness=thickness_fft,)
def Prominence_from_fft(lambdas, intensities, refractive_index, num_half_space=None, plot=True):
def Prominence_from_fft(wavelengths, intensities, refractive_index,
num_half_space=None, plot=None):
if num_half_space is None:
num_half_space = 10 * len(lambdas)
num_half_space = len(wavelengths)
# Interpolation pour que les données soient uniformément espacées
inverse_lambdas_times_n = refractive_index / lambdas
f = interp1d(inverse_lambdas_times_n, intensities)
# # # 1. Spectre original
# if plot:
# plt.figure(figsize=(10, 6), dpi=150)
# plt.plot(1/wavelengths, intensities, label='Spectre original')
# plt.xlabel('1/Longueur d\'onde (nm-1)')
# plt.ylabel('Intensité')
# plt.legend()
# plt.show()
inverse_lambdas_linspace = np.linspace(inverse_lambdas_times_n[0],
inverse_lambdas_times_n[-1],
2*num_half_space)
intensities_linspace = f(inverse_lambdas_linspace)
# FFT
density = (inverse_lambdas_times_n[-1] - inverse_lambdas_times_n[0]) / (2*num_half_space)
freqs = fftfreq(2*num_half_space, density)
fft_vals = fft(intensities_linspace)
# 2. Conversion lambda → k = n(λ) / λ
k_vals = refractive_index / wavelengths
f_interp = interp1d(k_vals, intensities, kind='linear', fill_value="extrapolate")
# On conserve uniquement les fréquences positives
freqs = freqs[num_half_space:]
fft_vals = fft_vals[num_half_space:]
# 3. Axe k uniforme + interpolation
k_linspace = np.linspace(k_vals[0], k_vals[-1], 2 * num_half_space)
intensities_k = f_interp(k_linspace)
# Trouver le pic principal
abs_fft = np.abs(fft_vals)
idx_max = np.argmax(abs_fft)
F_max = freqs[idx_max]
# 4. FFT
delta_k = (k_vals[-1] - k_vals[0]) / (2 * num_half_space)
fft_vals = fft(intensities_k)
freqs = fftfreq(2 * num_half_space, delta_k)
# 5. Pic FFT
freqs_pos = freqs[freqs > 0]
abs_fft_pos = np.abs(fft_vals[freqs > 0])
idx_max = np.argmax(abs_fft_pos)
F_max = freqs_pos[idx_max]
if plot:
print(f"F_max detected at: {F_max:.4f}")
plt.figure(figsize=(10, 6),dpi = 600)
plt.plot(freqs, abs_fft, label='|FFT|')
plt.axvline(F_max, color='r', linestyle='--', label='F_max')
plt.xlabel('Fréquence')
plt.ylabel('Amplitude FFT')
plt.yscale('log')
plt.figure(figsize=(10, 6), dpi=150)
plt.plot(freqs_pos, abs_fft_pos, label='|FFT|')
plt.axvline(F_max, color='r', linestyle='--', label='Pic principal')
plt.xlabel('Distance optique [nm]')
plt.ylabel(r'FFT($I^*$)')
plt.xscale('log')
plt.yscale('log')
plt.legend()
plt.show()
# Filtrage : on garde les composantes au-dessus de 10 * F_max
cutoff = 10 * F_max
mask = freqs >= cutoff
fft_filtered = np.zeros_like(fft_vals)
fft_filtered[mask] = fft_vals[mask]
# 6. Filtrage (garde hautes fréquences)
cutoff_HF = 2 * F_max
fft_full = np.zeros(2 * num_half_space, dtype=complex)
fft_full[num_half_space:] = fft_filtered # fréquences positives
fft_full[:num_half_space] = np.conj(fft_filtered[::-1])
# IFFT
signal_filtered = np.real(ifft(fft_full))
mask_HF = np.abs(freqs) >= cutoff_HF
fft_filtered_HF = np.zeros_like(fft_vals, dtype=complex)
fft_filtered_HF[mask_HF] = fft_vals[mask_HF]
# Max amplitude après filtrage
max_amplitude = np.max(np.abs(signal_filtered))
# 7. Filtrage (garde basses fréquences)
cutoff_BF = 10 * F_max
mask_BF = np.abs(freqs) <= cutoff_BF
fft_filtered_BF = np.zeros_like(fft_vals, dtype=complex)
fft_filtered_BF[mask_BF] = fft_vals[mask_BF]
# 8. Reconstruction
signal_filtered_HF = np.real(ifft(fft_filtered_HF))
signal_filtered_BF = np.real(ifft(fft_filtered_BF))
lambda_reconstructed = np.interp(k_linspace, k_vals[::-1], wavelengths[::-1])
# Masque dans la plage [550, 700] nm
mask_Cam_Sensitivity = (lambda_reconstructed >= 550) & (lambda_reconstructed <= 700)
# 9. Affichage reconstruction
if plot:
plt.figure(figsize=(10, 6),dpi = 600)
plt.plot(signal_filtered, label='Signal filtered')
plt.xlabel('Échantillons')
plt.ylabel('Amplitude')
plt.figure(figsize=(10, 6), dpi=150)
plt.plot(lambda_reconstructed, intensities_k, '--', label='Original interpolé')
plt.plot(lambda_reconstructed, signal_filtered_HF,'--', color='gray')
plt.plot(lambda_reconstructed[mask_Cam_Sensitivity], signal_filtered_HF[mask_Cam_Sensitivity],
color='orange', label='Spectre filtré HF')
plt.plot(lambda_reconstructed, signal_filtered_BF,
color='red', label='Spectre filtré BF')
plt.xlabel('Wavelength (nm)')
plt.ylabel('Intensity')
plt.legend()
plt.show()
print(f"Amplitude Mal filtered : {max_amplitude:.4f}")
return max_amplitude
max_amplitude = np.max(np.abs(signal_filtered_HF[mask_Cam_Sensitivity]))
return max_amplitude, signal_filtered_BF, lambda_reconstructed