This commit is contained in:
François Boulogne 2025-05-27 16:01:50 +02:00
parent 8bb23c3724
commit d321fce459
9 changed files with 371 additions and 261 deletions

View file

@ -1,6 +1,3 @@
import pandas as pd
from scipy.signal import savgol_filter
from scipy.signal import find_peaks
@ -13,54 +10,56 @@ plt.rcParams.update({
'legend.fontsize': 23,
})
from .io import load_spectrum
from .fft import *
from .minmax import *
def plot_spectrum(wavelengths, intensities, title=''):
def plot_spectrum(lambdas, intensities, title=''):
plt.figure(figsize=(10, 6),dpi =600)
plt.plot(lambdas, intensities, 'o-', markersize=2)
plt.figure(figsize=(10, 6), dpi=300)
plt.plot(wavelengths, intensities, 'o-', markersize=2)
plt.xlabel(r'$\lambda$ (nm)')
plt.ylabel(r'$I^*$')
plt.title(title)
plt.tight_layout()
plt.tight_layout()
plt.show()
def finds_peak(lambdas, intensities, min_peak_prominence, min_peak_distance=10, plot=None):
def finds_peak(wavelengths, intensities, min_peak_prominence, min_peak_distance=10, plot=None):
"""
Charge un fichier .xy et affiche les données avec les extrema détectés (minima et maxima).
Detect minima and maxima
Parameters
----------
filename : str
Chemin vers le fichier .xy (2 colonnes : lambda et intensité).
wavelengths : array
Wavelength values in nm.
intensities : array
Intensity values.
min_peak_prominence : float
Importance minimale des pics.
min_peak_distance : float
Distance minimale entre les pics.
min prominence for scipy find_peak.
min_peak_distance : int, optional
min peak distance for scipy find_peak. The default is 10.
plot : bool, optional
Display a curve, useful for checking or debuging. The default is None.
Returns
-------
(peaks_min, peaks_max)
"""
peaks_max, _ = find_peaks(intensities, prominence=min_peak_prominence, distance=min_peak_distance)
peaks_min, _ = find_peaks(-intensities, prominence=min_peak_prominence, distance=min_peak_distance)
if plot:
plt.figure(figsize=(10, 6),dpi =600)
plt.plot(lambdas, intensities, 'o-', markersize=2, label="Smoothed data")
plt.plot(lambdas[peaks_max], intensities[peaks_max], 'ro')
plt.plot(lambdas[peaks_min], intensities[peaks_min], 'ro')
plt.figure(figsize=(10, 6), dpi=300)
plt.plot(wavelengths, intensities, 'o-', markersize=2, label="Smoothed data")
plt.plot(wavelengths[peaks_max], intensities[peaks_max], 'ro')
plt.plot(wavelengths[peaks_min], intensities[peaks_min], 'ro')
plt.xlabel(r'$\lambda$ (nm)')
plt.ylabel(r'$I^*$')
plt.legend()
plt.tight_layout()
plt.tight_layout()
plt.show()
@ -68,8 +67,23 @@ def finds_peak(lambdas, intensities, min_peak_prominence, min_peak_distance=10,
def smooth_intensities(intensities):
WIN_SIZE = 11
smoothed_intensities = savgol_filter(intensities, WIN_SIZE, 3)
def smooth_intensities(intensities, window_size=11):
"""
Return a smoothed intensities array with a Savitzky-Golay filter.
Parameters
----------
intensities : ndarray
Intensity values
window_size : int, optional
The length of the filter window. The default is 11.
Returns
-------
smoothed_intensities
"""
polynom_order = 3
smoothed_intensities = savgol_filter(intensities, window_size, 3)
return smoothed_intensities