add test
This commit is contained in:
parent
90b3cd45b1
commit
cd06da8c8b
1 changed files with 67 additions and 0 deletions
67
tests/test_thickness.py
Normal file
67
tests/test_thickness.py
Normal file
|
@ -0,0 +1,67 @@
|
|||
import pytest
|
||||
import yaml
|
||||
from pathlib import Path
|
||||
import os.path
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_allclose
|
||||
from numpy.testing import assert_almost_equal
|
||||
|
||||
from optifik.minmax import thickness_from_minmax
|
||||
from optifik.analysis import smooth_intensities
|
||||
from optifik.io import load_spectrum
|
||||
|
||||
|
||||
def load():
|
||||
test_data_dir = Path(__file__).parent.parent / 'data'
|
||||
FOLDER = test_data_dir / 'spectraLorene' / 'sample1'
|
||||
|
||||
yaml_file = os.path.join(FOLDER, 'sample1.yaml')
|
||||
with open(yaml_file, "r") as yaml_file:
|
||||
thickness_dict = yaml.safe_load(yaml_file)
|
||||
#print(thickness_dict)
|
||||
data = [(os.path.join(FOLDER, fn), val) for fn, val in thickness_dict['known_thicknesses'].items()]
|
||||
return data
|
||||
|
||||
|
||||
def test_minmax_sample1():
|
||||
min_peak_prominence = 0.02
|
||||
min_peak_distance = 10
|
||||
skipped = ('011137.xy',
|
||||
'012426.xy',
|
||||
'012795.xy',
|
||||
'012979.xy',
|
||||
'011321.xy', #Insufficient number of data points
|
||||
)
|
||||
|
||||
for path, expected in load():
|
||||
file = os.path.split(path)[-1]
|
||||
if file not in skipped:
|
||||
lambdas, raw_intensities = load_spectrum(path, wavelength_min=450)
|
||||
smoothed_intensities = smooth_intensities(raw_intensities)
|
||||
r_index = 1.33 #TODO
|
||||
|
||||
prominence = 0.02
|
||||
distance = 10
|
||||
|
||||
result = thickness_from_minmax(lambdas,
|
||||
smoothed_intensities,
|
||||
refractive_index=r_index,
|
||||
min_peak_prominence=prominence,
|
||||
min_peak_distance=distance,
|
||||
method='ransac',
|
||||
plot=False)
|
||||
|
||||
assert_allclose(result.thickness, expected, rtol=2.3e-1)
|
||||
|
||||
#def test_fft_sample1():
|
||||
# for name, value in known_values.sample1['known_thicknesses'].items():
|
||||
# index = known_values.sample1['refractive_index']
|
||||
# # this method works only for large thicknesses
|
||||
# if value < 3000:
|
||||
# continue
|
||||
# path = os.path.join('spectra', name)
|
||||
# lambdas, intensities = io.load_spectrum(path, lambda_min=450)
|
||||
# result = thickness_from_fft(lambdas, intensities, refractive_index=index,)
|
||||
# error = 100 * np.abs(result.thickness - value) / value
|
||||
# assert(error < 5)
|
Loading…
Add table
Add a link
Reference in a new issue