init
This commit is contained in:
commit
30a9eef102
2999 changed files with 1898721 additions and 0 deletions
152
optifik/fft.py
Normal file
152
optifik/fft.py
Normal file
|
@ -0,0 +1,152 @@
|
|||
import numpy as np
|
||||
from scipy.interpolate import interp1d
|
||||
from scipy.fftpack import fft, ifft, fftfreq
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
plt.rc('text', usetex=True)
|
||||
plt.rcParams.update({
|
||||
'axes.labelsize': 26,
|
||||
'xtick.labelsize': 32,
|
||||
'ytick.labelsize': 32,
|
||||
'legend.fontsize': 23,
|
||||
})
|
||||
|
||||
|
||||
from .utils import OptimizeResult
|
||||
|
||||
|
||||
|
||||
def thickness_from_fft(lambdas, intensities,
|
||||
refractive_index,
|
||||
num_half_space=None,
|
||||
plot=None):
|
||||
"""
|
||||
Determine the tickness by Fast Fourier Transform.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
lambdas : array
|
||||
Wavelength values in nm.
|
||||
intensities : array
|
||||
Intensity values.
|
||||
refractive_index : scalar, optional
|
||||
Value of the refractive index of the medium.
|
||||
num_half_space : scalar, optional
|
||||
Number of points to compute FFT's half space.
|
||||
If `None`, default corresponds to `10*len(lambdas)`.
|
||||
debug : boolean, optional
|
||||
Show plot of the transformed signal and the peak detection.
|
||||
|
||||
Returns
|
||||
-------
|
||||
results : Instance of `OptimizeResult` class.
|
||||
The attribute `thickness` gives the thickness value in nm.
|
||||
"""
|
||||
if num_half_space is None:
|
||||
num_half_space = 10 * len(lambdas)
|
||||
|
||||
# FFT requires evenly spaced data.
|
||||
# So, we interpolate the signal.
|
||||
# Interpolate to get a linear increase of 1 / lambdas.
|
||||
inverse_lambdas_times_n = refractive_index / lambdas
|
||||
f = interp1d(inverse_lambdas_times_n, intensities)
|
||||
|
||||
inverse_lambdas_linspace = np.linspace(inverse_lambdas_times_n[0],
|
||||
inverse_lambdas_times_n[-1],
|
||||
2*num_half_space)
|
||||
intensities_linspace = f(inverse_lambdas_linspace)
|
||||
|
||||
|
||||
# Perform FFT
|
||||
density = (inverse_lambdas_times_n[-1]-inverse_lambdas_times_n[0]) / (2*num_half_space)
|
||||
inverse_lambdas_fft = fftfreq(2*num_half_space, density)
|
||||
intensities_fft = fft(intensities_linspace)
|
||||
|
||||
# The FFT is symetrical over [0:N] and [N:2N].
|
||||
# Keep over [N:2N], ie for positive freq.
|
||||
intensities_fft = intensities_fft[num_half_space:2*num_half_space]
|
||||
inverse_lambdas_fft = inverse_lambdas_fft[num_half_space:2*num_half_space]
|
||||
|
||||
idx_max_fft = np.argmax(abs(intensities_fft))
|
||||
freq_max = inverse_lambdas_fft[idx_max_fft]
|
||||
|
||||
|
||||
thickness_fft = freq_max / 2.
|
||||
|
||||
|
||||
plt.figure(figsize=(10, 6),dpi =600)
|
||||
if plot:
|
||||
plt.loglog(inverse_lambdas_fft, np.abs(intensities_fft))
|
||||
plt.loglog(freq_max, np.abs(intensities_fft[idx_max_fft]), 'o')
|
||||
plt.xlabel('Frequency')
|
||||
plt.ylabel(r'FFT($I^*$)')
|
||||
plt.title(f'Thickness={thickness_fft:.2f}')
|
||||
|
||||
return OptimizeResult(thickness=thickness_fft,)
|
||||
|
||||
|
||||
def Prominence_from_fft(lambdas, intensities, refractive_index, num_half_space=None, plot=True):
|
||||
if num_half_space is None:
|
||||
num_half_space = 10 * len(lambdas)
|
||||
|
||||
# Interpolation pour que les données soient uniformément espacées
|
||||
inverse_lambdas_times_n = refractive_index / lambdas
|
||||
f = interp1d(inverse_lambdas_times_n, intensities)
|
||||
|
||||
inverse_lambdas_linspace = np.linspace(inverse_lambdas_times_n[0],
|
||||
inverse_lambdas_times_n[-1],
|
||||
2*num_half_space)
|
||||
intensities_linspace = f(inverse_lambdas_linspace)
|
||||
|
||||
# FFT
|
||||
density = (inverse_lambdas_times_n[-1] - inverse_lambdas_times_n[0]) / (2*num_half_space)
|
||||
freqs = fftfreq(2*num_half_space, density)
|
||||
fft_vals = fft(intensities_linspace)
|
||||
|
||||
# On conserve uniquement les fréquences positives
|
||||
freqs = freqs[num_half_space:]
|
||||
fft_vals = fft_vals[num_half_space:]
|
||||
|
||||
# Trouver le pic principal
|
||||
abs_fft = np.abs(fft_vals)
|
||||
idx_max = np.argmax(abs_fft)
|
||||
F_max = freqs[idx_max]
|
||||
|
||||
if plot:
|
||||
print(f"F_max detected at: {F_max:.4f}")
|
||||
plt.figure(figsize=(10, 6),dpi = 600)
|
||||
plt.plot(freqs, abs_fft, label='|FFT|')
|
||||
plt.axvline(F_max, color='r', linestyle='--', label='F_max')
|
||||
plt.xlabel('Fréquence')
|
||||
plt.ylabel('Amplitude FFT')
|
||||
plt.yscale('log')
|
||||
plt.xscale('log')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
# Filtrage : on garde les composantes au-dessus de 10 * F_max
|
||||
cutoff = 10 * F_max
|
||||
mask = freqs >= cutoff
|
||||
fft_filtered = np.zeros_like(fft_vals)
|
||||
fft_filtered[mask] = fft_vals[mask]
|
||||
|
||||
fft_full = np.zeros(2 * num_half_space, dtype=complex)
|
||||
fft_full[num_half_space:] = fft_filtered # fréquences positives
|
||||
fft_full[:num_half_space] = np.conj(fft_filtered[::-1])
|
||||
# IFFT
|
||||
signal_filtered = np.real(ifft(fft_full))
|
||||
|
||||
# Max amplitude après filtrage
|
||||
max_amplitude = np.max(np.abs(signal_filtered))
|
||||
|
||||
if plot:
|
||||
plt.figure(figsize=(10, 6),dpi = 600)
|
||||
plt.plot(signal_filtered, label='Signal filtered')
|
||||
plt.xlabel('Échantillons')
|
||||
plt.ylabel('Amplitude')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
print(f"Amplitude Mal filtered : {max_amplitude:.4f}")
|
||||
|
||||
return max_amplitude
|
Loading…
Add table
Add a link
Reference in a new issue