This commit is contained in:
François Boulogne 2025-05-21 13:32:32 +02:00
commit 30a9eef102
2999 changed files with 1898721 additions and 0 deletions

152
optifik/fft.py Normal file
View file

@ -0,0 +1,152 @@
import numpy as np
from scipy.interpolate import interp1d
from scipy.fftpack import fft, ifft, fftfreq
import matplotlib.pyplot as plt
plt.rc('text', usetex=True)
plt.rcParams.update({
'axes.labelsize': 26,
'xtick.labelsize': 32,
'ytick.labelsize': 32,
'legend.fontsize': 23,
})
from .utils import OptimizeResult
def thickness_from_fft(lambdas, intensities,
refractive_index,
num_half_space=None,
plot=None):
"""
Determine the tickness by Fast Fourier Transform.
Parameters
----------
lambdas : array
Wavelength values in nm.
intensities : array
Intensity values.
refractive_index : scalar, optional
Value of the refractive index of the medium.
num_half_space : scalar, optional
Number of points to compute FFT's half space.
If `None`, default corresponds to `10*len(lambdas)`.
debug : boolean, optional
Show plot of the transformed signal and the peak detection.
Returns
-------
results : Instance of `OptimizeResult` class.
The attribute `thickness` gives the thickness value in nm.
"""
if num_half_space is None:
num_half_space = 10 * len(lambdas)
# FFT requires evenly spaced data.
# So, we interpolate the signal.
# Interpolate to get a linear increase of 1 / lambdas.
inverse_lambdas_times_n = refractive_index / lambdas
f = interp1d(inverse_lambdas_times_n, intensities)
inverse_lambdas_linspace = np.linspace(inverse_lambdas_times_n[0],
inverse_lambdas_times_n[-1],
2*num_half_space)
intensities_linspace = f(inverse_lambdas_linspace)
# Perform FFT
density = (inverse_lambdas_times_n[-1]-inverse_lambdas_times_n[0]) / (2*num_half_space)
inverse_lambdas_fft = fftfreq(2*num_half_space, density)
intensities_fft = fft(intensities_linspace)
# The FFT is symetrical over [0:N] and [N:2N].
# Keep over [N:2N], ie for positive freq.
intensities_fft = intensities_fft[num_half_space:2*num_half_space]
inverse_lambdas_fft = inverse_lambdas_fft[num_half_space:2*num_half_space]
idx_max_fft = np.argmax(abs(intensities_fft))
freq_max = inverse_lambdas_fft[idx_max_fft]
thickness_fft = freq_max / 2.
plt.figure(figsize=(10, 6),dpi =600)
if plot:
plt.loglog(inverse_lambdas_fft, np.abs(intensities_fft))
plt.loglog(freq_max, np.abs(intensities_fft[idx_max_fft]), 'o')
plt.xlabel('Frequency')
plt.ylabel(r'FFT($I^*$)')
plt.title(f'Thickness={thickness_fft:.2f}')
return OptimizeResult(thickness=thickness_fft,)
def Prominence_from_fft(lambdas, intensities, refractive_index, num_half_space=None, plot=True):
if num_half_space is None:
num_half_space = 10 * len(lambdas)
# Interpolation pour que les données soient uniformément espacées
inverse_lambdas_times_n = refractive_index / lambdas
f = interp1d(inverse_lambdas_times_n, intensities)
inverse_lambdas_linspace = np.linspace(inverse_lambdas_times_n[0],
inverse_lambdas_times_n[-1],
2*num_half_space)
intensities_linspace = f(inverse_lambdas_linspace)
# FFT
density = (inverse_lambdas_times_n[-1] - inverse_lambdas_times_n[0]) / (2*num_half_space)
freqs = fftfreq(2*num_half_space, density)
fft_vals = fft(intensities_linspace)
# On conserve uniquement les fréquences positives
freqs = freqs[num_half_space:]
fft_vals = fft_vals[num_half_space:]
# Trouver le pic principal
abs_fft = np.abs(fft_vals)
idx_max = np.argmax(abs_fft)
F_max = freqs[idx_max]
if plot:
print(f"F_max detected at: {F_max:.4f}")
plt.figure(figsize=(10, 6),dpi = 600)
plt.plot(freqs, abs_fft, label='|FFT|')
plt.axvline(F_max, color='r', linestyle='--', label='F_max')
plt.xlabel('Fréquence')
plt.ylabel('Amplitude FFT')
plt.yscale('log')
plt.xscale('log')
plt.legend()
plt.show()
# Filtrage : on garde les composantes au-dessus de 10 * F_max
cutoff = 10 * F_max
mask = freqs >= cutoff
fft_filtered = np.zeros_like(fft_vals)
fft_filtered[mask] = fft_vals[mask]
fft_full = np.zeros(2 * num_half_space, dtype=complex)
fft_full[num_half_space:] = fft_filtered # fréquences positives
fft_full[:num_half_space] = np.conj(fft_filtered[::-1])
# IFFT
signal_filtered = np.real(ifft(fft_full))
# Max amplitude après filtrage
max_amplitude = np.max(np.abs(signal_filtered))
if plot:
plt.figure(figsize=(10, 6),dpi = 600)
plt.plot(signal_filtered, label='Signal filtered')
plt.xlabel('Échantillons')
plt.ylabel('Amplitude')
plt.legend()
plt.show()
print(f"Amplitude Mal filtered : {max_amplitude:.4f}")
return max_amplitude