This commit is contained in:
François Boulogne 2025-06-04 13:20:13 +02:00
parent d5fae56eb4
commit 1800675fd3
5 changed files with 107 additions and 109 deletions

View file

@ -26,7 +26,7 @@ def plot_spectrum(wavelengths, intensities, title=''):
def finds_peak(wavelengths, intensities, min_peak_prominence, min_peak_distance=10, plot=None):
"""
Detect minima and maxima
Detect minima and maxima.
Parameters
----------

View file

@ -1,88 +0,0 @@
import os.path
from .analysis import *
from .io import load_spectrum
def auto(spectrum_file, plot=None):
spectre_file = spectrum_file
##### Affichage du spectre brut et récupération des Intesités brutes#####
lambdas, raw_intensities = load_spectrum(spectre_file, lambda_min=450)
##### Affichage du spectre lissé #####
#smoothed_intensities, intensities, lambdas = Data_Smoothed(spectre_file)
smoothed_intensities = smooth_intensities(raw_intensities)
##### Indice Optique en fonction de Lambda #####
indice = 1.324188 + 3102.060378 / (lambdas**2)
##### Determination de la prominence associé #####
prominence, signal, wavelength = Prominence_from_fft(lambdas,
smoothed_intensities,
refractive_index=indice,
plot=plot)
prominence = 0.03
##### Find Peak #####
peaks_min, peaks_max = finds_peak(lambdas, smoothed_intensities,
min_peak_prominence=prominence,
plot=False)
##### Epaisseur selon la methode #####
#thickness_FFT = thickness_from_fft(lambdas,smoothed_intensities,refractive_index=1.33)
total_extrema = len(peaks_max) + len(peaks_min)
if total_extrema > 15 and total_extrema > 4:
print('Apply method FFT')
result = thickness_from_fft(lambdas, smoothed_intensities,
refractive_index=indice,
plot=plot)
print(f'thickness: {result.thickness:.2f} nm')
if total_extrema <= 15 and total_extrema > 4:
print('Apply method minmax')
result = thickness_from_minmax(lambdas, smoothed_intensities,
refractive_index=indice,
min_peak_prominence=prominence,
plot=plot)
print(f'thickness: {result.thickness:.2f} nm')
if total_extrema <= 4 and total_extrema >= 2: #& 2peak minimum:
print('Apply method Scheludko')
result = thickness_from_scheludko(lambdas, smoothed_intensities,
refractive_index=indice,
min_peak_prominence=prominence,
plot=plot)
print(f'thickness: {result.thickness:.2f} nm')
if total_extrema <= 4 and len(peaks_max) == 1 and len(peaks_min) == 0 : #dans l'ordre zéro !
print('Apply method ordre0')
result = thickness_for_order0(lambdas, smoothed_intensities,
refractive_index=indice,
min_peak_prominence=prominence,
plot=plot)
print(f'thickness: {result.thickness:.2f} nm')
if total_extrema <= 4 and len(peaks_max) == 0 and (len(peaks_min) == 1 or len(peaks_min) == 0):
#& 1peak min ou zéro:
thickness = None
print('Zone Ombre')

View file

@ -71,12 +71,10 @@ def thickness_from_fft(wavelengths, intensities,
idx_max_fft = np.argmax(abs(intensities_fft))
freq_max = inverse_wavelengths_fft[idx_max_fft]
thickness_fft = freq_max / 2.
plt.figure(figsize=(10, 6),dpi =600)
if plot:
plt.figure(figsize=(10, 6),dpi =600)
plt.loglog(inverse_wavelengths_fft, np.abs(intensities_fft))
plt.loglog(freq_max, np.abs(intensities_fft[idx_max_fft]), 'o')
plt.xlabel('Frequency')
@ -86,90 +84,90 @@ def thickness_from_fft(wavelengths, intensities,
return OptimizeResult(thickness=thickness_fft,)
def Prominence_from_fft(wavelengths, intensities, refractive_index,
num_half_space=None, plot=None):
if num_half_space is None:
num_half_space = len(wavelengths)
# # # 1. Spectre original
# if plot:
# plt.figure(figsize=(10, 6), dpi=150)
# plt.plot(1/wavelengths, intensities, label='Spectre original')
# plt.xlabel('1/Longueur d\'onde (nm-1)')
# plt.ylabel('Intensité')
# plt.legend()
# plt.show()
# 2. Conversion lambda → k = n(λ) / λ
k_vals = refractive_index / wavelengths
f_interp = interp1d(k_vals, intensities, kind='linear', fill_value="extrapolate")
# 3. Axe k uniforme + interpolation
k_linspace = np.linspace(k_vals[0], k_vals[-1], 2 * num_half_space)
intensities_k = f_interp(k_linspace)
# 4. FFT
delta_k = (k_vals[-1] - k_vals[0]) / (2 * num_half_space)
fft_vals = fft(intensities_k)
freqs = fftfreq(2 * num_half_space, delta_k)
# 5. Pic FFT
freqs_pos = freqs[freqs > 0]
abs_fft_pos = np.abs(fft_vals[freqs > 0])
idx_max = np.argmax(abs_fft_pos)
F_max = freqs_pos[idx_max]
if plot:
plt.figure(figsize=(10, 6), dpi=150)
plt.plot(freqs_pos, abs_fft_pos, label='|FFT|')
plt.axvline(F_max, color='r', linestyle='--', label='Pic principal')
plt.xlabel('Distance optique [nm]')
plt.ylabel(r'FFT($I^*$)')
plt.xscale('log')
plt.yscale('log')
plt.legend()
plt.show()
# 6. Filtrage (garde hautes fréquences)
cutoff_HF = 2 * F_max
mask_HF = np.abs(freqs) >= cutoff_HF
fft_filtered_HF = np.zeros_like(fft_vals, dtype=complex)
fft_filtered_HF[mask_HF] = fft_vals[mask_HF]
# 7. Filtrage (garde basses fréquences)
cutoff_BF = 10 * F_max
mask_BF = np.abs(freqs) <= cutoff_BF
fft_filtered_BF = np.zeros_like(fft_vals, dtype=complex)
fft_filtered_BF[mask_BF] = fft_vals[mask_BF]
# 8. Reconstruction
signal_filtered_HF = np.real(ifft(fft_filtered_HF))
signal_filtered_BF = np.real(ifft(fft_filtered_BF))
lambda_reconstructed = np.interp(k_linspace, k_vals[::-1], wavelengths[::-1])
# Masque dans la plage [550, 700] nm
mask_Cam_Sensitivity = (lambda_reconstructed >= 550) & (lambda_reconstructed <= 700)
# 9. Affichage reconstruction
if plot:
plt.figure(figsize=(10, 6), dpi=150)
plt.plot(lambda_reconstructed, intensities_k, '--', label='Original interpolé')
plt.plot(lambda_reconstructed, signal_filtered_HF,'--', color='gray')
plt.plot(lambda_reconstructed[mask_Cam_Sensitivity], signal_filtered_HF[mask_Cam_Sensitivity],
color='orange', label='Spectre filtré HF')
plt.plot(lambda_reconstructed, signal_filtered_BF,
color='red', label='Spectre filtré BF')
plt.xlabel('Wavelength (nm)')
plt.ylabel('Intensity')
plt.legend()
plt.show()
max_amplitude = np.max(np.abs(signal_filtered_HF[mask_Cam_Sensitivity]))
return max_amplitude, signal_filtered_BF, lambda_reconstructed
#def Prominence_from_fft(wavelengths, intensities, refractive_index,
# num_half_space=None, plot=None):
# if num_half_space is None:
# num_half_space = len(wavelengths)
#
# # # # 1. Spectre original
# # if plot:
# # plt.figure(figsize=(10, 6), dpi=150)
# # plt.plot(1/wavelengths, intensities, label='Spectre original')
# # plt.xlabel('1/Longueur d\'onde (nm-1)')
# # plt.ylabel('Intensité')
# # plt.legend()
# # plt.show()
#
#
# # 2. Conversion lambda → k = n(λ) / λ
# k_vals = refractive_index / wavelengths
# f_interp = interp1d(k_vals, intensities, kind='linear', fill_value="extrapolate")
#
# # 3. Axe k uniforme + interpolation
# k_linspace = np.linspace(k_vals[0], k_vals[-1], 2 * num_half_space)
# intensities_k = f_interp(k_linspace)
#
# # 4. FFT
# delta_k = (k_vals[-1] - k_vals[0]) / (2 * num_half_space)
# fft_vals = fft(intensities_k)
# freqs = fftfreq(2 * num_half_space, delta_k)
#
# # 5. Pic FFT
# freqs_pos = freqs[freqs > 0]
# abs_fft_pos = np.abs(fft_vals[freqs > 0])
# idx_max = np.argmax(abs_fft_pos)
# F_max = freqs_pos[idx_max]
#
# if plot:
# plt.figure(figsize=(10, 6), dpi=150)
# plt.plot(freqs_pos, abs_fft_pos, label='|FFT|')
# plt.axvline(F_max, color='r', linestyle='--', label='Pic principal')
# plt.xlabel('Distance optique [nm]')
# plt.ylabel(r'FFT($I^*$)')
# plt.xscale('log')
# plt.yscale('log')
# plt.legend()
# plt.show()
#
# # 6. Filtrage (garde hautes fréquences)
# cutoff_HF = 2 * F_max
#
# mask_HF = np.abs(freqs) >= cutoff_HF
# fft_filtered_HF = np.zeros_like(fft_vals, dtype=complex)
# fft_filtered_HF[mask_HF] = fft_vals[mask_HF]
#
# # 7. Filtrage (garde basses fréquences)
# cutoff_BF = 10 * F_max
# mask_BF = np.abs(freqs) <= cutoff_BF
# fft_filtered_BF = np.zeros_like(fft_vals, dtype=complex)
# fft_filtered_BF[mask_BF] = fft_vals[mask_BF]
#
#
# # 8. Reconstruction
# signal_filtered_HF = np.real(ifft(fft_filtered_HF))
# signal_filtered_BF = np.real(ifft(fft_filtered_BF))
# lambda_reconstructed = np.interp(k_linspace, k_vals[::-1], wavelengths[::-1])
#
# # Masque dans la plage [550, 700] nm
# mask_Cam_Sensitivity = (lambda_reconstructed >= 550) & (lambda_reconstructed <= 700)
#
# # 9. Affichage reconstruction
# if plot:
# plt.figure(figsize=(10, 6), dpi=150)
# plt.plot(lambda_reconstructed, intensities_k, '--', label='Original interpolé')
# plt.plot(lambda_reconstructed, signal_filtered_HF,'--', color='gray')
#
# plt.plot(lambda_reconstructed[mask_Cam_Sensitivity], signal_filtered_HF[mask_Cam_Sensitivity],
# color='orange', label='Spectre filtré HF')
# plt.plot(lambda_reconstructed, signal_filtered_BF,
# color='red', label='Spectre filtré BF')
#
# plt.xlabel('Wavelength (nm)')
# plt.ylabel('Intensity')
# plt.legend()
# plt.show()
#
# max_amplitude = np.max(np.abs(signal_filtered_HF[mask_Cam_Sensitivity]))
#
# return max_amplitude, signal_filtered_BF, lambda_reconstructed
#

View file

@ -29,10 +29,10 @@ def thickness_scheludko_at_order(wavelengths,
Wavelength values in nm.
intensities : array
Intensity values.
interference_order: TYPE
DESCRIPTION.
refractive_index : TYPE
DESCRIPTION.
interference_order : int
Interference order.
refractive_index : array_like (or float)
Refractive index.
Imin : TYPE, optional
DESCRIPTION. The default is None.
@ -203,7 +203,7 @@ def thickness_from_scheludko(wavelengths,
min_ecart = ecart
best_m = m
best_h = h_values
if plot:
plt.plot(wavelengths_masked, h_values,'.', markersize=3, label=f"Épaisseur du film (Scheludko, m={m})")
@ -216,9 +216,9 @@ def thickness_from_scheludko(wavelengths,
# DeltaVrai = (intensities_masked -np.min(intensities_masked))/(np.max(intensities_masked) -np.min(intensities_masked))
# DeltaVrai = (intensities_raw_masked -np.min(intensities_raw_masked))/(np.max(intensities_raw_masked) -np.min(intensities_raw_masked))
DeltaScheludko = Delta(wavelengths_masked,
np.mean(best_h),
best_m,
DeltaScheludko = Delta(wavelengths_masked,
np.mean(best_h),
best_m,
r_index_masked)
@ -228,7 +228,7 @@ def thickness_from_scheludko(wavelengths,
if plot:
Delta_values = Delta(wavelengths_masked, fitted_h, best_m, r_index_masked)
plt.figure(figsize=(10, 6), dpi=300)
plt.plot(wavelengths_masked, DeltaVrai,
'bo-', markersize=2, label=r'$\mathrm{{Smoothed}}\ \mathrm{{Data}}$')
@ -240,7 +240,7 @@ def thickness_from_scheludko(wavelengths,
plt.xlabel(r'$\lambda$ ($ \mathrm{nm} $)')
return OptimizeResult(thickness=fitted_h ,)
return OptimizeResult(thickness=fitted_h,)
def thickness_for_order0(wavelengths,
@ -249,11 +249,11 @@ def thickness_for_order0(wavelengths,
min_peak_prominence,
plot=None):
# TODO :
# TODO :
# Load "trou"
File_I_min = 'tests/spectre_trou/000043641.xy'
wavelengths_I_min, intensities_I_min = load_spectrum(File_I_min, lambda_min=450)
r_index = refractive_index
peaks_min, peaks_max = finds_peak(wavelengths, intensities,
@ -287,7 +287,7 @@ def thickness_for_order0(wavelengths,
plt.figure(figsize=(10, 6), dpi=300)
plt.plot(wavelengths_masked, h_values, label=r"Épaisseur du film (Scheludko, m=0)")
best_m = m
best_h = h_values
@ -311,8 +311,8 @@ def thickness_for_order0(wavelengths,
if plot:
Delta_values = Delta(wavelengths_masked, fitted_h, best_m, r_index_masked)
plt.plot(wavelengths_masked, Delta_values,
'go-', markersize=2,
plt.plot(wavelengths_masked, Delta_values,
'go-', markersize=2,
label=rf'$\mathrm{{Fit}}\ (h = {fitted_h:.1f}\pm {np.sqrt(pcov[0][0]):.1f} \ \mathrm{{nm}})$')
plt.legend()
plt.ylabel(r'$\Delta$')